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It is known that a real-valued entire harmonic function u of exponential type
less than ? is uniquely determined by its values at the points n and nei:,
n=0, \1, \2, ..., unless : is a rational multiple of ?. For :=?�2, which belongs to
the exceptional cases, Ching has proved that u is uniquely determined by its values
at these points if u is in addition an odd function. In the present paper we shall
extend this result to the case :=(2k+1)?�(2l), where k and l{0 are arbitrary
integers. Furthermore, we shall present formulas which allow a reconstruction of
real-valued entire harmonic functions of exponential type ? by their samples at the
points n and nei:, n=0, \1, \2, ..., when :=(2k+1)?�(2l) or when :�? is irra-
tional and algebraic. � 1999 Academic Press

1. INTRODUCTION AND RESULTS

There exist numerous uniqueness theorems and interpolation formulas
for entire harmonic functions in the plane (see, e.g., [3, 5�7, 10, 13, 14]).
These investigations started with Boas [3, Theorem 1] who proved that an
entire harmonic function of exponential type less than ? is uniquely deter-
mined by its values at the lattice points n and n+i, n=0, \1, \2, ....
Besides, he obtained the following result [3, Theorem 2]; for an analogue
in higher dimensions see [2].

Theorem A. Let u be a real-valued entire harmonic function of exponen-
tial type less than ?. If u(n)=u(nei:)=0 for all integers n, then u vanishes
identically unless : is a rational multiple of ?.

The condition on : has also been of significance in the research of radial
functions [1,9]. That it is necessary in the present theorem can be seen as
follows. Given :=k?�l, where k, l # Z, l>0, we consider the function ul

defined by

ul (z) :=I(zl). (1)
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(As usual, I(z) denotes the imaginary part of z.) Then ul is a real-valued
entire harmonic function of exponential type zero which vanishes on the
two lines [x: x # R] and [xei: : x # R] but is not identically zero. However,
a uniqueness theorem analogous to Theorem A does hold for :=?�2 if the
function u is supposed to be odd, i.e., if u (&z)=&u (z) for all complex
numbers z. Note that the function ul defined in (1) is even for even l. Ching
[6] proved the following statement.

Theorem B. Let u be a real-valued odd entire harmonic function of
exponential type less than ?. If u(n)=u(ni)=0 for all integers n, then u
vanishes identically.

In the situation of Theorem B, Ching [6] also reconstructed u from its
values at the lattice points n and ni, n=0, \1, \2, ..., provided that u
satisfies a certain growth condition.

Theorem C. Let u be a real-valued odd entire harmonic function of
exponential type ? such that the series ��

n=&� |u(n)| p and ��
n=&� |u(ni)| p

are convergent, where 1�p<�. Then

u (z)= :
�

n=&�

u (n) vn (z)+ :
�

n=&�

u (ni) vn(&iz), (2)

where

vn(x+iy) :=
(&1)n n[(x2& y2&n2) cosh ?y sin ?x+2xy sinh ?y cos ?x]

?[ y2+(x&n)2][ y2+(x+n)2]
(3)

and the series converge uniformly on every compact subset of C.

Remark. The author [6] seems to have overlooked that, in case the
exponential type of u is equal to ?, the hypotheses of Theorem C

:
�

n=&�

|u(n)| p<� and :
�

n=&�

|u(ni)| p<� (4)

are not strong enough. Indeed, the function u (z) :=R(sin ?z) would satisfy
(4) whereas the reconstruction formula (2) does obviously not hold. A
correct version of Theorem C is obtained by replacing condition (4) by

u( } ) # L p(R) and u( } i) # L p(R). (5)

In view of Theorems of Plancherel and Po� lya [4, Theorem 6.7.15 and
Corollary 10.6.6] condition (5) implies (4) whereas (4) implies (5) only
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under the additional assumption that the exponential type of u is less
than ?.

Inspired by the example (1), we shall show that the supplement to
Theorem A provided by Theorem B in case of :=?�2 is also true whenever
:=(2k+1) ?�(2l) with integers k, l (l{0). Moreover, we establish a
corresponding extension of Theorem C.

Theorem 1. Let u be a real-valued odd entire harmonic function of
exponential type less than ?. Let :=(2k+1) ?�(2l) for some integers k and
l{0. If u (n)=u (ne i:)=0 for all integers n, then u vanishes identically.

Theorem 2. Let u be a real-valued odd entire harmonic function of
exponential type ?. Let :=(2k+1) ?�(2l) for some integers k and l{0 such
that u( } ), u( } ei:) # L p(R) for some p # [1, �).

Then

u(z)= :
�

n=&�

u(n) wn(&ze&i:)+ :
�

n=&�

u(nei:) wn(z),

where

wn(z) :=I \ :
�

m=0

b (n)
2m+1

sin((2m+1) :)
z2m+1+ (6)

and the numbers [b (n)
m ]m # N are uniquely defined by

:
�

m=0

b(n)
m zm :=

sin ?(z&n)
2?(z&n)

&
sin ?(z+n)
2?(z+n)

(n # Z). The series converge uniformly on every compact subset of C.

Our modification of Ching's method is also applicable if :�? is not
rational but algebraic.

Theorem 3. Let u be a real-valued entire harmonic function of exponen-
tial type ? satisfying u(0)=0. Let :�? be an irrational algebraic number. If
u( } ), u( } ei:) # L p(R) for some p # [1, �), then

u(z)= :
�

n=&�

u(n) (&wn(ze&i:))+ :
�

n=&�

u(nei:) wn(z),
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where

wn(z) :=I \ :
�

m=1

b (n)
m

sin (m:)
zm +

and the numbers [b (n)
m ]m # N are uniquely defined by

:
�

m=0

b (n)
m zm :=

sin ?(z&n)
?(z&n)

(n # Z). The series converge uniformly on every compact subset of C.

2. PROOFS OF THEOREMS

We shall need the following lemma.

Lemma. Let u be a real-valued entire harmonic function satisfying
u(x)=u(xei:)=0 for all real numbers x. If

:�?=(2k+1) � (2l) and u is odd, or
:�? is irrational,

then u vanishes identically.

Proof. Let v be a harmonic function conjugate to u so that f :=u+iv
is entire. Then the functions g(z) := f (z)+f (z� ) and h(z) := f (zei:)+f (z� e i:)
are also entire and vanish on the real line. Therefore, they vanish identi-
cally and we can conclude that

f (ze2i:)=&f (z� )= f (z) (7)

holds for all complex numbers z.
(I) Let :=(2k+1) ?� (2l) and let u be an odd function. Then applying

(7) l times, we obtain that

f (z)= f (zei?(2k+1)�l)= f (zei? 2(2k+1) �l)= } } } = f (zei?(2k+1))= f (&z).

We have deduced that f is even. Therefore, the function u, which is the real
part of f, is also even. Since u was supposed to be odd, it has to vanish
identically.

(II) Now we suppose that :�? is irrational. The entire function f can
be represented as f (z)=��

m=0 amzm. Then using (7), we find that
am (1& exp (2im:))=0 for all non-negative integers m. Since :�? is irra-
tional, we can conclude that am=0 for all m>0, which implies that f has
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to be a constant. Therefore, u has to vanish identically. This completes the
proof of the lemma. K

Proof of Theorem 1. Let v be a harmonic function conjugate to u so
that f :=u+iv is entire. It follows from Carathe� odory's inequality
[4, Theorem 1.3.1] that f is of exponential type less than ? (see also [3,
proof of Theorem 1]). Therefore, the functions g(z) := f (z)+f (z� ) and
h(z) := f (zei:)+f (z� ei:) are also entire and of exponential type less than ?.
Since we have 2u(x)= g(x) and 2u(xei:)=h(x) for all real numbers x, they
vanish at the integers. Hence by Carlson's theorem [4, Theorem 9.2.1],
they vanish identically. In particular, u(x)=u(xei:)=0 for all real numbers
x. Now the lemma yields that u itself vanishes identically. K

Proof of Theorem 2. Let us define

Sn(z) :=
sin ?(z&n)
2?(z&n)

&
sin ?(z+n)
2?(z+n)

for all integers n. Then Sn is an odd entire function. Therefore, Sn can be repre-
sented as Sn(z)=��

m=0 b (n)
2m+1z2m+1. The sequence [sin((2m+1) :)]m�0

is periodic since : is a rational multiple of ?. Furthermore,
sin((2m+1) :){0 for all integers m. Therefore, the sequence
[ |sin((2m+1) :)|]m�0 is bounded from below by a positive real number
and the function Wn defined by

Wn(z) := :
�

m=0

b (n)
2m+1

sin((2m+1):)
z2m+1

(n # Z) is entire. As in the theorem, we define wn :=I(Wn) for all integers
n. Obviously, wn is a real-valued entire harmonic function. Moreover, wn is
odd since Wn is odd. We shall need some more properties of wn . It can be
easily seen that the Taylor coefficients b (n)

m are real. Hence, Wn is real-
valued on the real line and we get that

wn(x)=0

for all real numbers x. Furthermore, we have

wn(xe\i:)=I \ :
�

m=0

b (n)
2m+1

sin((2m+1):)
e\i(2m+1): x2m+1+

=\ :
�

m=0

b (n)
2m+1 x2m+1

=\Sn(x). (8)
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Finally, we claim that

wn(z)=O \ 1
|n|+ as n � \� (9)

uniformly if z lies in a compact subset of C. For a proof we recall [12,
p. 11] that for two power series F(z)=��

m=0 cmzm and G(z)=��
m=0 dm zm

the Hadamard product F V G is defined by

(F V G)(z) := :
�

m=0

cmdmzm.

If F is analytic in [z # C: |z|<R] for some R>0 and if G is an entire func-
tion, then F V G is also entire. A simple calculation yields the following
representation (see also [12, p. 11])

(F V G)(z)=
1

2?i ||`|=*
F \z

`+
G(`)

`
d` (10)

for *>|z|�R. Let

F(z) := :
�

m=0

z2m+1

sin((2m+1) :)
,

which is analytic in [z # C: |z|<1]. Then applying the formula (10) to the
functions F and Sn , we obtain that

|(F V Sn)(z)|� sup
|`|=* }F \

z
`+ Sn(`)}�\ 1

|n|&*+ sup
|`|=* }F \

z
`+

sin ?`
? }

for |z|<*<|n|. Note that Wn=F V Sn . Recalling that wn=I(Wn), we
finally arrive at (9).

Let us define

w(z) := :
�

n=&�

u(n) wn(&ze&i:)+ :
�

n=&�

u(nei:) wn(z). (11)

Applying Ho� lder's inequality, we get that

:
�

n=&�

|u(n) wn(&ze&i:)|+ :
�

n=&�

|u(nei:) wn(z)|

�\ :
�

n=&�

|u(n)| p+
1�p

\ :
�

n=&�

|wn(&ze&i:)|q+
1�q

+\ :
�

n=&�

|u(nei:)| p+
1�p

\ :
�

n=&�

|wn(z)|q+
1�q

,
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where p # [1, �) and 1�p+1�q=1 (with obvious modifications for p=1).
Since u coincides with an entire function of exponential type on the real
line and also coincides with another entire function of exponential type on
the line [xei:: x # R] (see below), we obtain by using a result of Plancherel
and Po� lya [4, Theorem 6.7.15] that the series ��

n=&� |u(n)| p and
��

n=&� |u(nei:)| p are convergent. Therefore (9) guarantees that the series
at the right hand side converge uniformly if z lies in a compact subset of
C. Thus, the series at the right hand side of (11) also converge uniformly
on compact subsets of C and so w represents a real-valued entire harmonic
function. Note that w is odd since wn is odd for all integers n.

Let v be a harmonic function conjugate to u so that f :=u+iv is entire.
Then f is of exponential type ? as we have seen above, and so are the func-
tions g(z) := f (z)+f (z� ) and h(z) := f (ze i:)+f (z� ei:). Furthermore, they
satisfy g(x)=2u(x) and h(x)=2u(xei:) for all real numbers x. Applying
Shannon's sampling theorem [8, Theorem 1] and formula (8), we obtain
that

u(x)=
1
2

g(x)

=
1
2

:
�

n=&�

g(n)
sin ?(x&n)

?(x&n)

=
1
2

:
�

n=&�

(u(n)&u(&n))
sin ?(x&n)

?(x&n)

= :
�

n=&�

u(n)\sin ?(x&n)
2?(x&n)

&
sin ?(x+n)
2?(x+n) +

= :
�

n=&�

u(n) wn(&xe&i:)+ :
�

n=&�

u(nei:) wn(x)

=w(x)

for all real numbers x. Analogously, we find that

u(xei:)=w(xei:)

for all real numbers x. This shows that the real-valued odd entire harmonic
function u&w vanishes on the two lines [x: x # R] and [xei:: x # R].
Hence by the lemma the function u&w vanishes identically and Theorem
2 is proved. K
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Proof of Theorem 3. Let us now define

Sn(z) :=
sin ?(z&n)

?(z&n)

for all integers n. The function Sn is entire and therefore it can be represented
as Sn(z)=��

m=0 b (n)
m zm. We now have to prove that for all integers n

Wn(z) := :
�

m=1

b (n)
m

sin(m:)
zm

is also an entire function. Note that sin (m:){0 for all positive integers m
since : is not a rational multiple of ?. Furthermore, we have [11]

|m:& j?|>
C
m2

for a positive real number C and all integers m>0 and j. This implies

} 1
sin(m:) }�C$m2

for a positive real number C$ and all positive integers m. Therefore, we
obtain

lim sup
m � � } b (n)

m

sin (m:) } 1�m�lim sup
m � �

|b (n)
m |1�m lim sup

m � �
(C$m2)1�m=0.

This shows that Wn is entire. As in the theorem, we define wn :=I(Wn) for
all integers n. Then wn is a real-valued entire harmonic function. As in the
proof of Theorem 2, we can deduce the following properties of wn ;

wn(x)=0 for x # R;

wn(xe\i:)=\Sn(x) for n{0 and x # R;

wn(z)=O \ 1
|n|+ as n � \�

uniformly if z lies in a compact subset of C.
Let us define

w(z) := :
�

n=&�

u(n) (&wn(ze&i:))+ :
�

n=&�

u(nei:) wn(z).

Using the same arguments as in the proof of Theorem 2, we see that w
represents a real-valued entire harmonic function.
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Let v be a harmonic function conjugate to u so that f :=u+iv is entire.
Then, f is of exponential type ?. Therefore, the functions g(z) := f (z)+f (z� )
and h(z) := f (zei:)+f (z� ei:) are also entire and of exponential type ?.
Furthermore, they satisfy g(x)=2u(x) and h(x)=2u(xei:) for all real num-
bers x. Applying Shannon's sampling theorem again, we obtain

u(x)=
1
2

g(x)

=
1
2

:
�

n=&�

g(n)
sin ?(x&n)

?(x&n)

= :
�

n=&�

u(n) (&wn(xe&i:))+ :
�

n=&�

u(nei:) wn(x)

=w(x)

for all real numbers x. Note that u(0)=0. Analogously, we get that

u(xei:)=w(xei:)

for all real numbers x. Applying the lemma to the real-valued entire har-
monic function u&w, we find that u&w vanishes identically. Thus,
Theorem 3 is proved. K

3. FINAL REMARKS

In case of :=?�2 it can be easily seen that the odd entire harmonic func-
tions vn and wn defined by (3) and (6), respectively satisfy

vn(x)&wn(ix)=vn(ix)&wn(&x)=0

for all real numbers x. Applying the lemma to the function vn( } )&wn( } i),
we find that vn( } ) and wn( } i) are identical. Hence, Theorem 2 is an exten-
sion of Theorem C.

These results can be seen as a partial answer to a conjecture raised by
Ching in [6]. Ching conjectured that for general :=k?�l there exists an
interpolation formula analogous to (2) for a certain class of harmonic func-
tions for which a uniqueness theorem holds. We proved that this is the case
if :=(2k+1)?�(2l). In case of :=k?�(2l+1) we can find non-trivial even
and odd entire harmonic functions of exponential type zero vanishing on
the two lines [x: x # R] and [xei:: x # R]. Indeed, the functions u2(2l+1)

and u2l+1 defined in (1) have the desired properties. Let us mention that
there are many other entire harmonic functions which vanish on the two
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lines given above. Whenever f (z)=��
m=0 amzm is an entire function of

exponential type { which is real-valued on the real line, then
u(z) :=I(��

m=1 amlzml) is an entire harmonic function of exponential type
{ vanishing on [x: x # R] and [xei:: x # R] provided that :=k?�l. If l is
even, obviously u is also even. If l is not even, then we cannot say anything
about the symmetry properties of u.

Finally, let us mention that by using similar methods as presented above
we can also find reconstruction formulas for entire harmonic functions with
non-uniform nodes [t (1)

n ]n # Z and [t (2)
n ei:]n # Z , where the real numbers t (1)

n

and t (2)
n have to satisfy the condition |t ( j)

n &n|�L ( j=1, 2) for a suitable L.
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